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Abstract. Many quantum computing frameworks currently use noise aware algorithms for implementing quantum
circuits which do not scale efficiently as the size of the hardware architecture increases. As we move towards devices
which utilize more qubits, it becomes increasing more important to map quantum circuits in a way that uses resources
efficiently as well as maximizes the reliability of the results of that circuit. However, as the hardware increases to the
point where Quantum supremacy is attainable, it will infeasible for a brute-force algorithm to find the most optimal
circuit layout for circuits of medium to large depth sizes. To this end, we will to rely on reinforcement learning (RL)
as a method of building quantum circuits based on observations of the noise characteristics in its environment. In
this work, we create a working reinforcement learning environment in which an agent is able to make action which
will build the class of circuits which creates the GHZ state. In addition to this, we also get preliminary results of
the performance of a Deep Q Neural Network, which initially does not perform as well as we believe it can. In the
future, we want to improve the performance of the agent and potentially generalize this environment to more classes
of circuits.

1 Introduction

Quantum computing is a type of computing which leverages several quantum mechanical proper-

ties such as superposition and entanglement to perform computations. This type of computing has

been shown to offer a significant theoretical speed up for certain algorithms.1 Currently, quantum

computing takes place on Noisy Intermediate-Scale Quantum (NISQ) devices, a class of systems

composed of devices with fewer than 1000 qubits.2 With these systems, and at every stage of

quantum devices, finding optimal ways of mapping quantum circuits onto some target hardware.

However, as devices become larger and move into the regime of quantum supremacy, exact al-

gorithms for optimization become intractable. Therefore, we propose training a reinforcement

learning agent to build optimal circuits in noisy environments.
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2 Methodology

2.1 Tools for Modeling the Quantum Hardware

Quantum circuits are currently the primary method of doing quantum computing. These circuits

are composed of three main components: quantum bits (qubits), quantum gates, and measurement

gates.A qubit is the elementary elementary unit in quantum computing. Unlike classical bits which

can only hold values of 0 or 1, qubits are able to hold superpositions of states according to a

probabilistic scaling of two basis states |0〉 and |1〉 in C2. The state of a qubit can be expressed as

|ψ〉 = α |0〉+ β |1〉 (1)

where α and β are complex amplitudes such that |α|2 + |β|2 = 1. Qubits are acted on by

quantum operators or ”gates” which changes their state by altering the probability amplitude. There

are two kinds of gates: one-qubit gates, which acts on one qubits to change its state, and two qubit

gates which uses a control-target pair of qubits to change the state of the target qubit. There are

n-qubit gates, with n - 1 control qubits, but these are not considered in this study.

In order to model this behavior we use QuTip, an open-source framework for quantum comput-

ing based in Python. This package allows us to do low-level implementations of quantum circuits

with fully connected qubits as well as implementation of custom gates for even more control. In or-

der to model the environment seen in actual quantum hardware, we use the NetworkX graph-theory

Python package to treat both the hardware and the circuit as a directed graph.
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2.2 Creating Reinforcement Learning Environment with OpenAi Gym

Reinforcement learning is a type of machine learning which uses an agent to choose from a certain

set of actions based on observations from an environment to complete a task or maximize some

reward. Formally, this is know as a Markov Decision Process (MDP), where S is the finite set

of states of the environment, A is the finite set of actions that can be taken, and R is the finite

set of rewards that can be received. At each time step t = 0, 1, 2, ... the agent observes a state

st ∈ S chooses an action at ∈ A based on that state. At the next time-step t + 1, the environment

transitions into a new state st+1 ∈ S and the agent receives a reward rt+1 ∈ R. The focus

of this study is to create the environment in which an agent will be taking actions and making

observations of states. Specifically, we will be defining the action space A, state space S, and

criteria for receiving reward and the amount at each time step. This is implemented using OpenAI

Gym, an open-source framework for creating reinforcement learning environments.

2.2.1 Workflow of the RL Agent

The environment the RL agent will be working in is noisy quantum hardware with nearest neighbor

connectivity. Therefore, the environment is a directed square lattice graph, where each node qn

represents a qubit and each edge vij represents an available connection between a qubit qn, where

n, i, j are elements in the node space Q = [0, 1, 2, ...,m] where m is the number of nodes in the

graph.

In this environment, the agent will start at some random node on the grid. This location is

described by a pointer which is limited to moving towards other nodes which directly adjacent to

it. In this beginning, the pointer will move without placing gates in order find the best location

to start the circuit. It evaluates the goodness of a particular location by evaluating average fidelity
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of random GHZ circuits from its current location. After the agent has made some determination

of where to start the circuit, it will begin the circuit by placing a Hadamard gate at the pointer’s

current position. After this step, the agent proceeds by choosing a gate-direction pair and placing

placing these gates with respect to the direction, where the control qubit is the pointer’s current

position and the target qubit is the node the pointer moves to the choosen direction. It will do this,

placing either a CNOT gate or a SWAP gate,until the desired circuit width is reached.

2.2.2 State Representation and Action Space

The only information that is given to the agent in terms of what it observes is the state of the circuit

at each time step. The circuit is represented by an initially edgeless, directed graph and the agent

observes the the adjacency matrix of the graph. The adjacency matrix of a graph with m nodes is

an mxm matrix. As the agent adds gates to the to the circuit, edges are added to the graph and

elements are added to matrix according to the nodes that they connect.

Noise Model For our noise model, we want to use the concept of a ”Noisy Unitary” (NU),N to

simulate coherent noise on a quantum device. This NU is represented by as superposition of two

gates. Initially, we are able to construct a gate N̂ such that

N̂ = aU + bT (2)

where U and T are unitary kxk two-qubit gate operations and a and b are constants. We

then need to transform N̂ into a unitary matrix N , which can be done through the Grahm-Schmit

process. This process will transform the columns of N̂ , nl into an orthonormal basis set of Ck such
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that

nl =
n̂l −

∑l−1
j=1 projnj

(n̂l)

‖n̂l −
∑l−1

j=1 projnj
(n̂l)‖

(3)

where

projnj
(n̂l) =

n̂j · nl

nl · nl

nl

. For our environment, we model the cohenrent noise for a CNOT gate as superposition of itself

and the CZ gate where

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


CZ =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


The matrix for this noisy unitary according to the above formula is

NU(a) =



1 0 0 0

0 1 0 0

0 0 b√
a2+b2

a√
a2+b2

0 0 a√
a2+b2

− b√
a2+b2


(4)

Notice that while NU is unitary for any a, b ∈ R or any a = b ∈ C, we want NU to represent

some percentage of its constituent gates. Therefore, we restrict a = c ∈ [0, 1] and b = 1 − a. We

can verify this matrix by substituting a = 1 and a = 0 to get the CNOT and CZ gate, respectively.
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From this gate, we create the SWAP gate, which is composed of three CNOT gates. To generate

random noise in our device, each of the edges in the graph are assigned a normally distributed

random element c ∈ [0, 1] and a NU(c) is applied along that edge.

2.2.3 Calculating Intermediate Reward Using Random Tree Search

At each time step, we need to have some measure of goodness of the potential completed circuits

that can be created from the agent’s current position in the hardware at it current stage in complet-

ing the desired circuit. Therefore, we use a random tree search in order to create random circuits,

calculate their fidelity, and use the average as an intermediate reward.

2.2.4 RL Agent Goal and Restrictions

To start, the goal of the agent will be to create simple circuits and we hope to develop something

which can be applied more generally in the future. For our study, the agent’s goal is to create

a circuit which creates the GHZ state for a specified number of working qubits. This circuit is

very simple in that its implementation is straightforward. The GHZ state circuit adheres to a

line topology on any graph which causes entanglement between qubits. Therefore, a minor, but

important, detail that must be included in the environment is that the agent is not able to make

moves which would form a loop or non-line topology in the graph.

3 Preliminary Agent Results

For the agent, we use a Deep-Q Network (DQN) as the agent for our environment. We use a

standard implementation of the agent provided in the Tensorflow Agents Python package. As seen

below, the agent does perform better after a certain number of time steps but it does not perform

optimally, as when as noiseless path is introduced to the environment, the agent is not able to find
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Fig 1 A plot of the agent’s average return vs. the number of iterations.

it. At the moment, more testing and fine tuning are needed in order to improve the performance of

the agent.

4 Future Works

From this study, we build a functional reinforcement learning environment in which a reinforce-

ment learning agent can perform actions and receive rewards. Additionally, we also obtain pre-

liminary results of a DQN agent’s performance in this environment, which is not optimal when a

noiseless, optimal path is introduced and performance remains relatively low. Thus, going foward,

we want to improve the performance of our RL Agent with the following questions in mind: What

is the best state representation of the environment for the RL agent? Which RL model will have the

best performance in the proposed environment? How do we generalize the environment to more

classes of circuits?
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